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I. Introduction 

1. Aging 
Aging is a complex biological process with a profound impact on health and disease risk. 
Contemporary research views it as a regulated phenomenon, outlined by the nine 
interconnected "hallmarks of aging" (genomic instability, telomere attrition, epigenetic 
alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular 
senescence, stem cell exhaustion, and altered intercellular communication)(1). This framework 
is foundational, guiding the investigation of cellular mechanisms and intervention targets. Key, 
conserved pathways influencing aging include the insulin/IGF-1 signaling and mTOR 
pathways(2,3). Experimental modulation of these, alongside interventions like caloric restriction 
(CR) and CR-mimicking compounds (rapamycin, metformin, NAD+-related therapeutics), has 
extended lifespan in various models(2,3). Understanding aging has broad implications for public 
health, as age is the leading risk factor for chronic diseases(4). The field of geroscience seeks 
to target aging mechanisms to delay or prevent multiple pathologies simultaneously(5). 
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Aging is intricately linked to the development of most chronic diseases (neurodegenerative 
disorders, cardiovascular diseases, metabolic syndromes, cancer)(6). The demographic shift 
towards older populations strains healthcare systems and expenditure, as a large share of 
resources is allocated to managing chronic, age-related illnesses, especially at the end of 
life(4). Proactive, preventative strategies are needed. 
 
The goal in aging research is shifting from merely extending lifespan to extending healthspan 
(years lived in good health) (7). Current medicine typically treats chronic diseases in isolation, 
overlooking their common root in the underlying aging process(6). A more holistic approach 
involves intervening in the biological mechanisms of aging itself to improve overall health 
outcomes and reduce multimorbidity(1). Interventions targeting aging-related pathways, such as 
rapamycin, senolytics, and NAD+ enhancers, are being studied for their capacity to improve 
health across multiple domains by acting on core aging hallmarks (impaired cellular recycling, 
inflammation, mitochondrial dysfunction)(8). 
 
Aging is driven by a constellation of deteriorating biological processes, distilled into the 
prominent "hallmarks of aging" model by López-Otín et al.(1). This framework connects diverse 
cellular events, such as DNA damage, senescence, impaired protein maintenance, and 
dysregulated metabolic pathways (insulin/IGF-1 signaling, mTOR, sirtuins)(1,9). Evolutionarily, 
aging is explained by the mutation accumulation, antagonistic pleiotropy, and disposable soma 
theories, which focus on selective pressure and trade-offs(10). Mechanistic views, like the free 
radical theory, focus on damage, though current understanding is more nuanced(11). 
 
Omics technologies (genomics, transcriptomics, proteomics, metabolomics, epigenomics) 
provide a comprehensive, multilayered view of molecular changes during aging, identifying 
biomarkers and tracing age-associated decline(12). Computational biology and bioinformatics 
are essential for interpreting these vast datasets, supporting pathway analysis, network 
modeling, and the development of biological age predictors like epigenetic clocks(13,14). 
Artificial intelligence (AI) and machine learning (ML) further enhance analysis by uncovering 
subtle patterns, modeling aging trajectories, identifying risk profiles, and prioritizing therapeutic 
targets, accelerating the path to precision medicine for aging(15). Our work leverages these 
technologies to investigate immune system aging and fibrotic progression. 
 
Comparative biology offers insights by studying species with diverse lifespans (e.g., naked mole 
rats, bowhead whales), highlighting conserved or uniquely adapted longevity mechanisms like 
enhanced proteostasis, DNA repair, and robust stress responses(16,17). Cross-species studies 
help distinguish age-related changes from chronological time by observing how different species 
manage aging over vastly different timeframes, often showing that long-lived mammals 
suppress inflammation and maintain genomic integrity more effectively(18). Transcriptomic 
analysis (RNA-Seq) across species identifies longevity-linked gene expression signatures, such 
as the downregulation of growth pathways and upregulation of maintenance genes, offering 
clues to conserved molecular pathways relevant to human health(19). Chapter II of this thesis 
uses cross-species transcriptomics to identify shared and species-specific gene expression 
changes related to aging, stress defense, and immune regulation. 
 
Fibrosis (excessive deposition of extracellular matrix) is a key feature of age-related tissue 
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dysfunction in organs like the heart, kidneys, liver, and lungs(20). Aging-associated changes 
(oxidative damage, chronic inflammation, fibroblast activation) create a fibrogenic environment. 
Idiopathic pulmonary fibrosis (IPF) is a prime, age-associated example, predominantly affecting 
individuals over 60(21). Mechanistically, aging promotes lung fibrosis via epithelial cell 
senescence, the pro-fibrotic senescence-associated secretory phenotype (SASP), mitochondrial 
dysfunction, and persistent inflammatory signaling (TGF-β, IL-6)(22,23). Chapter III covers 
collaborative work studying aging signatures in lung fibrosis using a mouse bleomycin-induced 
pulmonary fibrosis model. 
 
Disrupted intercellular communication is a systemic hallmark of aging, manifesting as chronic 
low-grade inflammation (inflammaging), impaired immune surveillance, and altered endocrine 
signaling(1). "Inflammaging"(24) is fueled in part by senescent cells releasing SASP factors 
(cytokines, chemokines) that disrupt tissue and immune function, creating a deleterious 
feedback loop(25). Immunosenescence and changes in endocrine signaling further contribute to 
the dysregulation(26). Altered communication is a key driver of systemic aging. In Chapter IV, I 
describe my contributions: 1) developing a bioinformatics tool, scDiffCom, for inferring changes 
in intercellular communication from scRNA-Seq data, and 2) using scDiffCom to build an atlas of 
age-related changes in intercellular communications in mice (scAgeCom). 
 
Immunosenescence—the age-related decline of the immune system—results in diminished 
pathogen responses, reduced vaccine efficacy, and increased age-associated diseases(27). A 
core component is the deterioration of the adaptive humoral response, marked by changes in 
the B cell compartment and reduced antibody repertoire diversity(28). Adaptive Immune 
Receptor Repertoire Sequencing (AIRR-Seq) allows deep analysis of B and T cell receptor 
sequences(29). However, aging studies face challenges due to cross-sectional datasets and 
inconsistent analytical pipelines(30). Traditional repertoire analysis often fails to capture the 
complex, nonlinear patterns of the aging immune system, prompting a turn toward machine 
learning (ML). Chapter V describes collaborative work in computational immunology focused on 
the impact of immune repertoire training data on ML models, which is crucial for developing 
tools for a better future understanding of age-related immune repertoire dynamics. 

2. Computational biology and artificial intelligence 

High-throughput omics technologies, such as genomics, transcriptomics, proteomics, 
metabolomics, and epigenomics, have generated extensive biological datasets(13). The 
magnitude and complexity of this data necessitate sophisticated computational methods. 
Computational biology and bioinformatics provide the essential infrastructure for data handling, 
preprocessing, and statistical interpretation. More recently, machine learning (ML) and artificial 
intelligence (AI) have become prominent, excelling at detecting intricate, often nonlinear, 
patterns in omics data(31). AI's influence spans domains from predicting gene regulatory activity 
from DNA sequences(32) to analyzing cell populations in single-cell transcriptomics. This 
intersection is enabling the transition from descriptive to predictive and mechanistic models, 
particularly in aging research. 
 
RNA sequencing (RNA-Seq) is a transformative tool for global gene expression profiling, 
offering superior sensitivity and dynamic range compared to older methods(33). It enables 
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downstream analyses like differential expression and network construction, providing insight into 
biological pathways and disease mechanisms(34). The emergence of single-cell RNA 
sequencing (scRNA-Seq) further revolutionized the field by resolving gene expression at the 
individual cell level. Unlike bulk RNA-Seq, scRNA-Seq reveals the diversity and heterogeneity 
within complex tissues, making it possible to identify rare cell types and lineage trajectories(35). 
My research extensively leveraged the high-resolution power of these technologies, and the 
analyses and discoveries presented in Chapters II, III, and IV relied on the deep insights 
enabled by RNA-Seq and scRNA-Seq. 
 
Machine learning (ML) is integral to modern life sciences for pattern detection and prediction, 
especially in omics and biomedical imaging. Early ML focused on high accuracy, often using 
'black box' models like deep neural networks(36). Due to concerns in fields like medicine, the 
focus has shifted to interpretable machine learning. Techniques such as SHAP and LIME allow 
researchers to understand how models make decisions, linking specific inputs (e.g., genes) to 
outputs(37). This interpretability has been crucial for uncovering causal genes and decoding 
biological logic(38). In aging research, interpretability is vital for translating predictions into 
biological meaning. In my own work, interpretability was a central pillar of the investigations in 
Chapters II, IV, and V. 
 
The adaptive immune system’s diversity is based on millions of unique B cell receptors (BCRs) 
and antibodies. Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) allows for deep 
profiling of this diversity, revolutionizing the study of humoral immunity across various 
conditions(39). AIRR-Seq captures millions of BCR sequences in parallel, enabling the 
reconstruction of clonotypes and lineage relationships (29). Analyzing this vast, complex data 
requires robust computational frameworks for tasks like sequence alignment, clustering, and 
mutation identification (30). My research contributes to this field by advancing machine learning 
techniques for AIRR-Seq, focusing on foundational challenges such as selecting negative 
training data to build more biologically relevant models. This foundational effort, described in 
Chapter V, aims to ultimately bridge gaps in mapping immune repertoire dynamics during aging. 

II. Cross-species gene expression reveals new gene 
candidates involved in aging and longevity 
*Kulaga, A. Y., *Ursu, E., *Toren, D., Tyshchenko, V., Guinea, R., Pushkova, M., Fraifeld, V. E. 
& Tacutu, R. Machine Learning Analysis of Longevity-Associated Gene Expression Landscapes 
in Mammals. Int. J. Mol. Sci. 22, (2021). 
* denotes first co-authorship 

Statement of Contributions 

I contributed substantially to the design of the study, the development and implementation of the 
framework, data processing, and interpretation of the results. As a co–first author, I shared core 
responsibilities equally with Anton Kulaga and Dmitri Toren. Together, we collaboratively 
developed the conceptual and analytical components of the study, co-wrote all sections of the 
manuscript, and worked jointly on key methodological and interpretative decisions. The study 
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was carried out under the coordination and supervision of Dr. Robi Tăcutu and Prof. Vadim E. 
Fraifeld. 

Overview 

In the field of aging research, a central challenge is to understand how variations in gene 
expression influence the longevity observed among different species. This study seeked to 
clarify the complex relationships between transcriptomic differences and maximum lifespan 
(MLS) by addressing the limitations of conventional linear models and the impact of 
confounding factors like metabolic rate, gestation period, and body mass. 

1. Introduction 
Investigating the diversity in MLS alongside gene transcription across species provides valuable 
insights into the evolutionary mechanisms of longevity. Recent research has revealed distinct 
differences in gene expression profiles between long- and short-lived mammals(40–43). 
Notably, exceptionally long-lived species show elevated levels of genes associated with DNA 
maintenance and repair, ubiquitination, immune responses, apoptosis, and autophagy(44). The 
overexpression of DNA repair genes is consistently highlighted in cross-species cell culture 
studies(45), and in several mammalian organs, immune response gene expression positively 
correlates with MLS(42). Pro-longevity adaptations in the transcriptome are clearly documented 
in species like bats(46), naked mole rats(41,47), and whales(40,44). This evidence underscores 
the potential of comparative transcriptomic studies to uncover the genetic basis of longevity. 
 
Traditional comparative transcriptomic studies often relied on linear methods, overlooking 
non-linear biological processes. Recent advances, however, offer other solutions. 

2. Methods 
 
We framed the problem as a feature reduction task, seeking a minimal, highly predictive set of 
genes associated with Maximum Life Span (MLS) variation across different organs. Our pipeline 
integrates transcriptomic data from multiple species to detect longevity-associated genes 
(LAGs) using three complementary methods: linear modeling for organ-specific trends, 
LightGBM combined with SHAP for evaluating gene influence and interactions, and Bayesian 
network modeling to infer potential causal links with MLS. 
 
This study included mammalian species with available RNA-Seq data for healthy liver, kidney, 
lung, brain, or heart tissues from the NCBI Sequence Read Archive, with transcriptome 
annotations sourced from Ensembl Compara Database(48). A total of 408 samples from 38 
species spanning five organs were processed using a standardized RNA-Seq quantification 
pipeline. Orthology data and transcriptome annotations were sourced from Ensembl release 99. 
Overall 11,831 genes yielded.  
 
Fastp (version 0.20.1)(49) handled quality control and trimming. Transcript quantification was 
performed with Salmon (version 1.4.0)(50), and tximport (version 3.12) aggregated expression 
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at the gene level. Raw read counts were normalized using the transcripts per million (TPM) 
method for cross-species comparative analysis. 
 
Organ-specific linear models were developed to identify genes associated with MLS. Pathway 
activity was assessed using single-sample gene set enrichment analysis (ssGSEA) with KEGG 
pathways(51). 
 
To explore non-linear patterns, a two-step backward selection was used, combining LightGBM 
and SHAP. Six independent regression models first predicted different life-history traits 
(including MLS) from gene expression. Genes identified in any model were pooled for a second 
phase to refine the MLS-associated set. A rigorous 5-fold cross-validation with sorted 
stratification, repeated ten times, was applied, requiring non-zero SHAP values for significance. 
A strict data-splitting strategy ensured predictions relied on gene patterns, not species 
identification. The top 15 genes were selected based on the elbow of the SHAP feature 
importance graph (Supp. Fig. S4 from Kulaga, Ursu, Toren et al.(52).). 
 
Bayesian networks were employed to map conditional independence and infer potential causal 
connections with MLS. The SES algorithm(53) was used for feature selection, identifying genes 
in the Markov blanket of MLS. SES was applied to the imputed training set, and the resulting 
gene signature was evaluated by a LightGBM model trained on the non-imputed data, selecting 
the signature with the lowest RMSE. 
 
The three modeling approaches yielded ranked lists based on distinct metrics: (1) 
LightGBM-SHAP: frequency of non-zero mean absolute SHAP, Kendall’s tau, and mean 
absolute SHAP; (2) Linear Regression: maximum R2; and (3) Bayesian Networks: relative 
frequency in signatures. A final composite ranking was derived by summing the ranks of six key 
metrics: frequency of selection, Kendall’s tau correlation, mean absolute SHAP value, highest 
linear R2, relative frequency in Bayesian networks, and GenAge mention indicator(54). A 
Bayesian multilevel linear model with organ-specific random coefficients was constructed to 
analyze the final set of selected genes.  
 
Based on the composite ranking and an elbow plot (Supp. Fig. S4 from Kulaga, Ursu, Toren et 
al.(52)), the top 15 genes were identified. A series of LightGBM-SHAP models, incorporating 
subsets from the top 5 to the top 15 genes, were developed. Model accuracy evaluation 
indicated that the top-6 gene model offered the best trade-off between simplicity and 
performance, showing a notable reduction in Huber loss (0.8) compared to the top-5 model. 

3. Results and Discussion 
A cross-species gene expression dataset, compiled from publicly available RNA-Seq data, 
offers a broad comparative framework. This dataset contains gene expression data across five 
major organs (liver, kidney, lung, brain, and heart) from 408 samples across 41 mammalian 
species. Species-specific variables, including MLS, body mass, temperature, metabolic rate, 
gestation period, and mitochondrial DNA GC content, were incorporated after normalization, as 
they are key longevity factors(55–57). To explore the link between gene expression and MLS, 
we used linear regression, interpretable LightGBM-SHAP modeling, and Bayesian network 
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analysis. Integrating results from these models identified genes consistently ranking as top MLS 
predictors (see Fig. 1). 
 
Linear models were used to assess the relationship between the expression of 11,831 
evolutionarily conserved orthologs and Maximum Lifespan (MLS) in 33 mammalian species 
(Fig. 2a). The number of genes significantly associated with MLS (FDR < 0.05, R^2 > 0.3) 
varied by organ, peaking in the lung (756) and bottoming in the kidney (154). Median R2 values 
were consistent (0.35–0.38). 

 
Figure 1. Schematic representation of the cross-species analysis workflow.  
Figure adapted from Figure 1 from Kulaga, Ursu, Toren. et al. (2021), used under license CC BY 4.0. 
 
Only three genes (CRYGS, TCFL5, and SPATA20) positively correlated with MLS across all five 
organs. Focusing on the brain, liver, and kidney increased MLS-associated genes to 12, 
including SPATA20, TCFL5, and CRYGS (Supp. Table S2 from Kulaga, Ursu, Toren et al.(52)). 
 
Many MLS-associated genes also correlated with other life-history traits (e.g., body mass, 
metabolic rate), suggesting indirect associations. Only a few genes correlated uniquely with 
MLS: one in the liver (CERS4), four in the heart, and 131 in the lung; none in the brain or 
kidney. However, heart and lung results should be interpreted cautiously due to smaller sample 
sizes. 
 
We used the signature projection approach (ssGSEA) to analyze the relationship between 
biological pathway activity, estimated from gene expression across organs, and maximum 
lifespan (MLS) (Fig. 2b). Our analysis focused on established aging/longevity pathways, 
including mTOR and insulin signaling, DNA repair, ubiquitin-mediated proteolysis, and focal 
adhesion(58–60). 
 
While mTOR signaling did not significantly correlate with MLS, multiple DNA repair-related 
pathways (mismatch, nucleotide excision, base excision, homologous recombination, and 
non-homologous end-joining) showed robust positive correlations. Several other pathways were 
positively and negatively correlated with MLS. Unexpectedly, pathways not traditionally linked to 
longevity, such as apoptosis, cell adhesion molecules, and ErbB signaling, positively correlated 
with MLS. We validated known longevity pathways (apoptosis, DNA repair, immune responses) 
and highlighted underexplored ones—including PPAR signaling, glutathione metabolism, and 
ErbB signaling—as promising areas.  
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Figure 2. Linear correlations between gene expression and biological pathways with MLS.  
(a) Top Linear Correlations Between Gene Expression and Species Traits. This heatmap highlights statistically 
significant relationships (FDR < 0.05, R² > 0.3) between gene expression levels and key species traits. (b) Top 
Linear Correlations Between MLS and Pathway Enrichment Scores The second heatmap visualizes key 
associations between MLS and pathway enrichment scores (ES). 
Figure adapted from Figure 2 Kulaga, Ursu, Toren. et al. (2021), used under license CC BY 4.0. 
 
To identify non-linear relationships between gene expression and Maximal Lifespan (MLS), we 
employed an interpretable machine learning framework using LightGBM and SHapley Additive 
exPlanations (SHAP)(61),(37). A baseline model using species life-history traits (body mass, 
metabolic rate, temperature, gestation period, and mitochondrial GC content) achieved high 
accuracy (R2 = 0.96). Mitochondrial DNA GC content and gestation period were the most 
influential predictors, consistent with previous findings(62),(56). Next, a two-stage backward 
feature selection with LightGBM-SHAP assessed individual gene influence on MLS. This 
approach refined an initial set to 57 genes, substantially improving predictive performance 
(Stage II: R2 increased from 0.90 to 0.95; MAE decreased from 4.73 to 3.04). Among the 57 
genes, a non-significant but consistent overlap (17 genes) was noted with documented 
longevity-associated genes (LAGs) in the GenAge database(54), including GNAS and TERT. 
Prioritizing genes by mean absolute SHAP values, we found 57 genes with significant predictive 
contributions (> 0.1 years). The SHAP summary plot (Fig. 3) illustrates their relative influence. 
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Figure 3. SHAP Explanations of Gene Expression and MLS Predictions 
(a) SHAP Summary Plot. (b) SHAP Decision Plot for Individual Predictions. (c) SHAP Interaction Heatmap for Gene 
Pairs. (d) SHAP-based Heatmap of Gene Contributions per Sample.Figure adapted from Figure 3 Kulaga, Ursu, 
Toren. et al. (2021), used under license CC BY 4.0. 
 
Five of the top 15 genes (DYRK4, NFKBIL1, TRAPPC2L, ETV2, and CHCHD3) substantially 
influenced MLS predictions, each shifting predictions by over one year.  The association of 
TRAPPC2L and ETV2 with aging is undocumented, suggesting they are promising new 
candidates for longevity research. Quantifying the direction and strength of association using 
Kendall’s tau-b between gene expression and SHAP contributions identified strongly 
pro-longevity genes (tau ≥ 0.6) like NEIL1, CALCOCO2, and LRR1, and strongly anti-longevity 
genes (tau ≤ −0.6), including C6orf89 and PPP1CA. CALCOCO2 (tau = 0.72) consistently 
emerged as a strong positive predictor of MLS across multiple organs (e.g., lung R² = 0.56, 
brain R² = 0.54, liver R² = 0.53, heart R² = 0.39). Conversely, the strongest anti-longevity gene, 
C6orf89 (tau = −0.79), was negatively predictive in the heart (R² = 0.61) and liver (R² = 0.40).  
 
Genes influencing mammalian lifespan (MLS) often interact complexly, leading to combined 
effects different from individual impacts. We analyzed these using SHAP interaction values, 
which quantify cooperative or antagonistic relationships. Fig. 3c summarizes interaction 
strengths among top MLS-associated genes.  
 
We then applied Bayesian network modeling to explore potential causal associations between 
gene expression and MLS, identifying robust relationships independent of redundancy or 
indirect correlations(63). Using the Markov blanket concept and the SES algorithm(53), we 
conducted 50 iterations to generate potentially causal gene signatures (Supp. Fig. S3 from 
Kulaga, Ursu, Toren et al.(52)). Highly frequent genes, indicating robustness, included NOXA1 
(1.00), C6orf89 (0.94), NEU2 (0.94), NDUFA6 (0.90), RBM46 (0.82), KCNMB3 (0.72), and CEL 
(0.60). Biologically, these results corroborate LightGBM-SHAP findings (e.g., NOXA1, C6orf89, 
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CEL). Functional enrichment strongly implicated mitochondrial mechanisms as central to 
longevity. 
 
We found substantial consistency between linear and LightGBM-SHAP models. Bayesian 
network integration reinforced NOXA1, C6orf89, and CEL, pointing to mitochondria, DNA repair, 
and metabolic regulation as key longevity processes. Integrating Bayesian and 
LightGBM-SHAP results, we found robust Bayesian genes (NOXA1, C6orf89, NEU2, NDUFA6, 
RBM46, KCNMB3, CEL) did not all have the highest SHAP values. However, CEL and 
KCNMB3 ranked among the top 10 most impactful genes by SHAP. Two genes, NOXA1 and 
KCNMB3, were robustly associated with MLS across all three methods. These reliable, 
cross-validated genes are strong candidates for future functional longevity investigation. 
 
Composite Ranking and Core Gene Signature Determination. We established a composite 
ranking by aggregating performance metrics from all three models. This rank was used with 
Bayesian multilevel linear models to identify an optimal, concise core gene signature. 
Evaluating subsets (top 3 to top 13 genes) based on penalized deviance, the top 11 ranked 
genes were selected as the core signature, balancing model simplicity and prediction accuracy. 
This final set (detailed in Table 1 in the full thesis and in the publication) provides robust 
candidate genes for mammalian longevity research. 

4. Conclusions 
This study analyzed gene expression across 41 mammalian species and five organs, using 
linear, non-linear, and Bayesian network models, to identify genetic determinants of Maximum 
Lifespan (MLS). Over 1800 genes showed significant, often organ-specific, MLS correlations. 
Pathway analysis confirmed established longevity pathways (e.g., DNA repair) and suggested 
novel ones (e.g., PPAR signaling). Interpretable machine learning (LightGBM-SHAP) and 
Bayesian networks identified additional candidate genes, with limited overlap with experimental 
longevity-associated genes (LAGs), reflecting differences between natural variation and genetic 
intervention. Notably, CEL, NOXA1, CALCOCO2, and KCNMB3 were consistently identified as 
robust longevity candidates. The research highlights the value of integrating complementary 
modeling to dissect mammalian lifespan, offering promising candidates and a solid 
methodological framework. 

III. Aging signature in lung fibrosis 
Toren, D., Yanai, H., Abu Taha, R., Bunu, G., Ursu, E., Ziesche, R., Tacutu, R. & Fraifeld, V. E. 
Systems biology analysis of lung fibrosis-related genes in the bleomycin mouse model. Sci. 
Rep. 11, 19269 (2021). 

Statement of Contributions 

As second author, my main contribution was a cross-species linear modeling analysis, 
correlating pro- and anti-fibrotic gene expression with maximum lifespan (MLS) in mammalian 
organs. I also interpreted results and assisted with manuscript preparation. The project was 
conceived and coordinated by Prof. Vadim E. Fraifeld and Dr. Robi Tăcutu's teams. 
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Results and Discussion 
This study identified 216 unique Pulmonary Fibrosis-Related Genes (PFRGs) using a 
bleomycin-induced lung fibrosis mouse model. Genetic interventions were the primary method. 
Approximately 43.5% of these genes showed anti-fibrotic activity, 50% were pro-fibrotic, and 
6.5% had inconsistent outcomes.  
Associations between PFRGs and Longevity. Cross-referencing PFRGs with 
Longevity-Associated Genes (LAGs) from the GenAge database(58,64) revealed a strong 
directional link: 11 out of 12 pro-longevity genes were anti-fibrotic, and 5 out of 6 anti-longevity 
genes were pro-fibrotic (Fisher’s exact test, p = 0.001). 
Further analysis of cross-species lung expression data showed that 34 PFRGs significantly 
correlated with mammalian Maximum Lifespan (MLS), a frequency 2.34 times higher than 
expected (Fisher’s exact test, p = 6.4E−05). This supports the hypothesis that fibrosis-related 
genes play a conserved role in longevity regulation, underscoring fibrosis as a critical driver of 
age-related pathology. 

Conclusions 
 
Pro-longevity genes (LAGs) are generally anti-fibrotic, and anti-longevity genes are largely 
pro-fibrotic, revealing a strong, shared genetic link between pulmonary fibrosis and aging. 
Functional analysis reinforces this, with anti-fibrotic clusters rich in LAGs and pro-fibrotic 
clusters primarily anti-LAGs. 
This aligns with aging being tied to pathways governing tissue repair, inflammation, and 
metabolism, which are critical to both conditions. Current evidence suggests that fibrosis and 
aging arise from shared genetic/molecular mechanisms, though causality requires more study. 

IV. Intercellular communication is disrupted with aging 
*Lagger, C., *Ursu, E., Equey, A., Avelar, R. A., Pisco, A. O., Tacutu, R. & de Magalhães, J. P. 
scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging 
changes in intercellular communication. Nat. Aging 3, 1446–1461 (2023). 
* denotes first co-authorship 
 
Statement of Contributions 
As co–first author of this study, I contributed equally to the design, implementation, and 
interpretation of the project alongside Dr. Cyril Lagger. Specifically, I co-developed the 
scDiffCom, scAgeCom, and scAgeComShiny tools; curated and analyzed the ligand–receptor 
interaction database; and performed analyses to support key findings. I was also actively 
involved in interpreting the results and co-writing the manuscript. The core methodological 
framework and analytic pipeline were developed collaboratively between myself and C.L., and 
represent the primary focus of this chapter. The study was jointly supervised by Dr. Robi Tăcutu 
and Prof. João Pedro de Magalhães. 
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Overview 
Intercellular communication (ICC) dysregulation is a fundamental hallmark of aging, contributing 
to various physiological and pathological processes. To investigate these changes 
systematically, we introduce scDiffCom and scAgeCom, two complementary tools for analyzing 
age-related alterations in cell–cell communication. 
 
scDiffCom is an R package for differential ICC analysis using single-cell transcriptomics data, 
leveraging a curated database of approximately 5,000 ligand–receptor interactions (LRIs) to 
compare communication networks across different conditions. 
 
Built upon scDiffCom, scAgeCom is a comprehensive atlas of age-related ICC changes, 
integrating data from 23 mouse tissues and 58 scRNA-seq datasets from Tabula Muris Senis 
and the Calico Murine Aging Cell Atlas. This resource reveals systemic age-related shifts in 
intercellular signaling, including: 

●​ Increased immune activity and inflammation 
●​ Reduced developmental signaling 
●​ Impaired angiogenesis and extracellular matrix remodeling 
●​ Dysregulated lipid metabolism 

 
scAgeCom identifies specific ligands, receptors, and cell types driving these processes and is 
publicly available at https://scagecom.org. 

1. Introduction 
Aging is a complex biological process marked by significant dysregulation of ICC, recognized as 
a hallmark of aging(1,65). Existing research highlights several ICC alterations with aging, such 
as inflammaging(66), impaired immune surveillance(67), and increased SASP secretion(68). 
While ICC is challenging to measure directly, advancements in single-cell gene expression 
analysis allow for its inference(69,70). Existing single-cell aging studies often focus on detecting 
ICC networks separately in young and old samples, which overlooks shifts in interaction 
strength and lacks a statistical framework for quantifying changes. To address these limitations, 
we developed scDiffCom, an R package for differential ICC analysis. We applied scDiffCom to 
aging scRNA-seq datasets from Tabula Muris Senis(71) and the Calico Murine Aging Cell 
Atlas(72) to create scAgeCom, a large-scale atlas mapping age-associated ICC changes across 
23 mouse tissues. This analysis confirms systemic dysregulation, with a global upregulation of 
immune system activity and inflammation, and a decline in processes like extracellular matrix 
organization and tissue growth. 

2. Methods 
Retrieving and Processing Ligand–Receptor Interactions (LRIs) and annotation with GO 
terms, KEGG pathways, and aging resources. We compiled curated, high-quality 
ligand–receptor interaction (LRI) datasets from seven public databases (e.g., CellChat, 
NicheNet, CellPhoneDB), excluding computationally predicted interactions. LRIs were 
annotated with Gene Ontology (GO) terms using a custom method based on graph-based 
intersection of ligand and receptor terms from Ensembl. KEGG pathways were assigned only if 
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both the ligand and receptor were in the same pathway. To link LRIs to aging, we integrated 
data from aging-related databases (GenAge, LongevityMap, CellAge, HAGR) and quantified 
PubMed articles referencing each LRI gene (or its human homolog) in the context of aging. 
 
CCI Scoring (Geometric Mean), Detection, Differential Analysis, and Classification. 
scDiffCom calculates a cell-cell interaction (CCI) score as the geometric mean of ligand and 
receptor expression to reflect the multiplicative nature of interactions, making its log fold change 
(logFC) the arithmetic mean of the gene logFCs. The method uses three simultaneous 
permutation tests to assess CCI specificity in two conditions (A, B) and differential expression 
between them, testing only expressed CCIs. Null distributions are generated by shuffling labels, 
and one-sided specificity and two-sided differential expression p-values are computed and 
Benjamini-Hochberg adjusted. A CCI is "detected" if expressed, specific (adj. p < 0.05), and 
top-ranked (80%). It is "differentially expressed" if its FDR-adjusted differential p-value is < 0.05. 
Detected CCIs are classified (UP, DOWN, FLAT, NSC) based on adjusted DE and logFC, 
prioritizing the differential test. Benchmarking against standard differential gene expression 
highlights the necessity of integrating CCI-level and gene-level results for reliable interaction 
capture and classification. Over-Representation Analysis (ORA) is used to detect 
over-represented features (e.g., GO terms, pathways) in differentially regulated Cell-Cell 
Interactions (CCIs). 
 
scAgeComShiny Development. The interactive Shiny web application, scAgeComShiny, was 
built with golem (73). It uses plotly (74) for scatter plots and rrvgo (75)/REVIGO(76) for GO term 
visualization and redundancy reduction. The application is containerized with Docker and 
deployed via ShinyProxy. 
 
Statistics and Reproducibility. Sample size was limited by public availability. No 
randomization or blinding was possible. Non-parametric tests (DE and ORA) were used, with 
Benjamini–Hochberg correction consistently applied for multiple testing. 

3. Results and Discussion 
 
LRIs from existing databases 
To analyze intercellular communication (ICC) from scRNA-seq data, our approach first required 
an extensive LRI database. To maximize coverage of different interaction types, we compiled 
LRIs from seven publicly available resources, including CellChat (79), CellPhoneDB (80), 
CellTalkDB (81), NATMI/connectomeDB2020 (82), ICELLNET (83), NicheNet (84), and 
SingleCellSignalR (85). Our approach resulted in the generation of two curated ligand–receptor 
interaction (LRI) databases. The mouse LRI database contains 4,582 interactions, of which 
3,479 are simple and 1,103 are complex. Similarly, the human LRI database includes 4,785 
interactions, with 3,648 simple and 1,137 complex interactions. Detailed data can be found in 
Fig. 6a and Supp. Tables 1 and 2 from Lagger, Ursu et al. (86). 
 
Functional annotation of LRIs. We implemented a standardized framework to annotate all 
ligand–receptor interactions (LRIs), ensuring biological relevance and facilitating downstream 
analyses. To enrich LRIs with biologically meaningful annotations, we assigned Gene Ontology 

13 

https://sciwheel.com/work/citation?ids=11174339&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11142908&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11054292&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=807308&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10691771&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8312724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10000904&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9778492&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10627195&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7913116&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8476302&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15775260&pre=&suf=&sa=0


 
(GO) terms (87) in a meaningful way to interactions, prioritizing terms relevant to the interaction 
itself rather than the individual genes. LRIs were linked to KEGG pathways (88) only if all genes 
in a given interaction were present in the same pathway. In anticipation of aging-related 
analyses, we mapped mouse LRI genes to PubMed articles linking them to aging and 
age-related diseases (excluding cancers). Additionally, we cross-referenced genes with key 
aging-related databases, including GenAge (54), CellAge (89,90), LongevityMap (91), Gene 
Expression (92) database of the Human Ageing Genomic Resources (HAGR) (54). 
 
Differential cell–cell communication analysis with scDiffCom 
The R package scDiffCom detects significant changes in cell-type communication (CCI) 
between two conditions in scRNA-seq datasets (Fig. 4), working with R Seurat objects 
containing cell-type and condition labels(93–95). It assigns a CCI score based on average 
ligand and receptor expression, robust to total cell number bias(96). CCIs are validated based 
on three criteria: sufficient expression, specificity via a CellPhoneDB-like permutation 
test(80,97), and a high relative score. CCIs are then classified as upregulated (UP), 
downregulated (DOWN), stable (FLAT), or non-significant change (NSC). scDiffCom employs 
Over-Representation Analysis (ORA) to analyze thousands of classified Cell-Cell Interactions 
(CCIs)—Upregulated (UP), Downregulated (DOWN), or Stable (FLAT)—against a background 
of the rest. This approach avoids traditional gene-based enrichment bias. 
 
Aging dysregulates several aspects of cell–cell communication 
The scAgeCom atlas, constructed with scDiffCom across 58 murine scRNA-seq datasets from 
TMS(71) and Calico(72), details age-related intercellular communication (ICC) changes across 
23 organs, addressing sex dimorphism (Fig. 5 and Supp. Text 1, Supp. Fig. 1 from Lagger, Ursu 
et al.(86)). This resource is online (https://scagecom.org/) (Fig. 6). Of 393,035 detected cell-cell 
interactions (CCIs), 18% were differentially regulated with age (5% upregulated, 13% 
downregulated). 1,135 ligand-receptor interactions were filtered out to minimize false 
discoveries. Benchmarking confirmed scDiffCom's CCI score is superior to gene-level 
comparisons (Ext. Data Fig. 2 from Lagger, Ursu et al.(86)), its ORA method avoids GO term 
bias (Supp. Figs. 2 and 3 from Lagger, Ursu et al.(86)), and LRI databases are crucial (Supp. 
Fig. 4 from Lagger, Ursu et al.(86)). These results establish scDiffCom as a robust tool for 
detecting biologically relevant, protein-mediated CCIs from scRNA-seq data, making the 
scAgeCom atlas a valuable resource for aging research. 
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Figure 4. Workflow Summary of scDiffCom. 
Single-cell RNA-seq read counts or unique molecular identifiers (UMIs) are first aggregated by cell types and 
experimental conditions (1). Gene expression data are then mapped onto the curated database of ligand–receptor 
interactions (LRIs) (2) to infer all possible cell–cell interactions (CCIs) between cell types (3). Statistical permutation 
tests are performed to assess the biological relevance of each CCI and to detect differential expression between 
conditions (4). CCIs are subsequently classified based on computed metrics, including interaction scores, P values, 
and log fold change (5). The results are compiled into a structured format suitable for downstream analysis and 
interpretation (6). FC, fold change; tSNE, t-distributed stochastic neighbor embedding. 
Figure adapted from Figure 2 from Lagger, Ursu. et al. (2023), used under license CC BY 4.0 
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Figure 5. The 58 scRNA-seq Aging Datasets Used to Build scAgeCom. 
Figure adapted from Figure 3 from Lagger, Ursu. et al. (2023), used under license CC BY 4.0 
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Figure 6. Overview of Visual Outputs in scAgeCom. 
scAgeCom offers a variety of graphical outputs, accessible at https://scagecom.org/, to facilitate exploration of 
aging-related changes in intercellular communication. 
Figure adapted from Figure 4 from Lagger, Ursu. et al. (2023), used under license CC BY 4.0 
 

 
Figure 7. Variation in CCI age regulation patterns across scAgeCom datasets. 
The proportions of CCIs classified as upregulated (UP), downregulated (DOWN), stable (FLAT), or non-significantly 
changing (NSC) with age differ across datasets, depending on tissue type, sex, and experimental methodology. 
Overall, TMS FACS datasets exhibit greater noise, reflected by a higher proportion of NSC-classified CCIs, 
compared to Droplet-based datasets. Additionally, TMS FACS (male) datasets display a notably higher fraction of 
age-downregulated CCIs relative to other conditions. 
Figure adapted from Figure 6 from Lagger, Ursu. et al. (2023), used under license CC BY 4.0 
 
The regulation of cell-cell interactions (CCIs) with age is highly variable, with TMS FACS (male) 
datasets showing many downregulated CCIs. FACS datasets are noisier than Droplet datasets. 
We prioritized changes across multiple tissues, involving novel aging genes, in secretomics, or 
sex-dependent. 
A systemic upregulation of inflammatory, immune, and viral processes was confirmed, including 
B2m:Cd3g, Tnfsf12:Tnfrsf12a, and Ccl5 interactions (Ext. Data Fig. 3b from Lagger, Ursu et 
al.(86)). B2M is present in five secretomes. Slpi:Plscr1, despite upregulation in eight tissues, is 
largely unstudied in aging. 
Lipid metabolism is dysregulated (Ext. Data Fig. 4 from Lagger, Ursu et al.(86)) with sex-specific 
patterns: Apoe-related CCIs are upregulated in males but downregulated in females, and vice 
versa for App-related CCIs. These AD-related proteins likely have systemic aging roles, 
supported by secretome detection. 
A striking observation is the downregulation of extracellular matrix (ECM) organization and cell 
adhesion (Ext. Data Fig. 5 from Lagger, Ursu et al.(86)). This decline, driven by collagens, 
cadherins, and metallopeptidases with integrins, is strongest in connective tissue, epithelial, and 
endothelial cells. 
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Growth, development, survival, differentiation, and angiogenesis also decline (Ext. Data Fig. 6 
from Lagger, Ursu et al.(86)), suggesting impaired regeneration. Decreased communication 
among stem cells and to endothelial cells links aging to reduced regenerative capacity (Ext. 
Data Fig. 5c from Lagger, Ursu et al.(86)). 
scAgeCom reveals sex-dimorphic patterns (Fig. 7); e.g., in the TMS FACS Lung dataset, 13% of 
CCIs (including App, Pecam1, and Itgb1) showed stronger expression in young males, 
decreased with age in males, but increased in females, highlighting the need for personalized 
approaches. 

4. Conclusions 
Despite significant limitations, scAgeCom offers an extensive atlas of ICC aging in mice, 
providing novel insights into tissue-specific and sex-specific communication changes. Key 
contributions include: 

●​ Comprehensive ICC mapping across 23 tissues  
●​ Identification of potential therapeutic targets (e.g., B2m, Mif, Angpt1, Apoe)  
●​ New hypotheses on aging mechanisms, including lipid metabolism shifts and 

mechanisms vascular decline  
●​ Potential for integration with senescence and proteomics datasets for further validation 

Moving forward, cross-analysis with other aging atlases, such as the SASP atlas, will be 
instrumental in refining our understanding of how ICC influences the aging process. 

V. Negative training data composition is critical for 
learning immune repertoires 
*Ursu, E., *Minnegalieva, A., Rawat, P., Chernigovskaya, M., Tacutu, R., Sandve, G. K., Robert, 
P. A. & Greiff, V. Training data composition determines machine learning generalization and 
biological rule discovery. Nature Machine Intelligence (2025). doi:10.1101/2024.06.17.599333 
* denotes first co-authorship 
 
Statement of Contributions 
As co–first author of this study, I contributed equally with Aygul Minnegalieva to the design, 
execution, and writing of the work. Together with Aygul Minnegalieva and Prof. Victor Greiff, I 
designed the analyses and visualizations central to the study. I also performed key analyses 
and figure generation in collaboration with Aygul Minnegalieva and Dr. Philippe A. Robert. In 
addition, I co-authored the first draft of the manuscript alongside Aygul Minnegalieva and Prof. 
Victor Greiff, and participated in revising the final version. The collaborative nature of this study 
is reflected in our equal contributions. This chapter focuses on the work we jointly developed 
and interpreted the results within the broader context of immunological modeling under the 
guidance of Prof. Victor Greiff. 

1. Introduction 
Supervised machine learning (ML) models rely critically on the composition of labeled datasets, 
particularly the definition of negative samples (representing the absence of the target class) in 
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binary classification(98–101,102,103). This factor is understudied concerning its influence on 
model generalization and biological rule extraction. The context of antibody–antigen binding 
prediction, with its varied negative data construction strategies, provides a framework to study 
these effects. Prior work shows negative example choice impacts predictive accuracy and 
generalization in antibody–antigen and TCR–antigen interaction models(104–106,107–111); 
however, the impact on interpretability (binding mechanisms inferred) is unexamined. To 
investigate, we used "Absolut!"(106) to generate synthetic antibody–antigen data with various 
negative dataset strategies (Fig. 8), focusing on CDRH3 regions. Simple neural networks and 
DeepLIFT(112–114) were used to assess learned biological rules (Fig. 8). Models trained with 
negative data more similar to the positive class generalized better to unseen data and revealed 
different binding rules compared to those trained with dissimilar negatives. These trends held on 
experimental data (Fig. 8,9)(115). The design and selection of negative examples is a critical, 
often overlooked, component for building robust and interpretable ML models in biological 
applications. 
This final chapter offers a methodological contribution to machine learning models of immune 
receptor repertoires, addressing challenges in training data quality and antigen specificity 
assignment. It improves on current AIRR-Seq modeling limitations to increase interpretability 
and biological relevance, establishing computational groundwork for future studies on immune 
aging and adaptive immune repertoire changes. 
 

 
 
Figure 8. Training dataset composition shapes ML generalization and rule discovery. 
Figure adapted from Figure 1 from Ursu, E. et al. (2025), used under license CC BY 4.0 
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2. Methods 
A semi-synthetic antibody–antigen binding dataset was generated using the Absolut! simulation 
framework (Robert et al., Akbar et al.(106,116)). This dataset combines authentic mouse 
CDRH3 sequences(117) with 3D-lattice-formatted PDB antigen structures. CDRH3s were 
docked onto rigid antigens to calculate binding energies using the Miyazawa–Jernigan statistical 
potential in a 3D-lattice model (Absolut! framework, Robert et al.(106)). Sequences were 
labeled by binding affinity percentile: high-affinity (top 1%), weak (1–5%), and non-binders 
(remaining 95%). Data from ten antigens were used. 
 
For prediction tasks, balanced datasets (30k train, 10k test) were created per antigen. Positive 
samples (top 1% binders) were compared against four negative class definitions: Vs 1 (different 
single antigen), Vs 9 (pooled nine other antigens), Vs Weak (weak binders, 1–5%), and Vs 
Non-binder (>5%). Reproducibility was ensured with six train–test splits and four random seeds 
per split. 
 
The core Machine Learning model was SN10(106), a shallow feedforward neural network 
trained on one-hot encoded CDRH3s (220-neuron input, 10-unit ReLU hidden layer, sigmoid 
output). This was benchmarked against a deeper Transformer and PLM-based SN10 variants 
using pre-trained ESM2b (1280 dim.) and AntiBERTa2 (1024 dim.) embeddings(118,119,120), 
generated via EmbedAIRR. Interpretability was explored using DeepLIFT(114) to quantify amino 
acid contribution. Additionally, Epitope-Specific Analysis involved constructing datasets 
restricted to sequences binding to the single dominant epitope (e.g., 1H0DE1). 

3. Results and Discussion 
1. Training dataset sequence composition influences prediction performance in ID and  
OOD binary classification tasks   
 
1.1 Machine learning setup on synthetic and experimental data  

We began by investigating how different definitions of the negative class affect the performance 
and generalizability of supervised machine learning models for antibody–antigen binding 
prediction. Each task of the four tasks used an identical set of positive samples—high-affinity 
CDRH3 sequences—but differed in how the negative class was defined. 

We used synthetic CDRH3 sequence data annotated with binding energies for ten antigens. For 
each antigen, the positive class consisted of sequences falling in the top 1% affinity percentile. 
We defined four types of negative classes: vs Non-binder: CDRH3 sequences from the lowest 
95% binding energy percentile to the same antigen; vs Weak: Weak binders within the 1–5% 
percentile for the same antigen, forming a set disjoint from vs Non-binder; vs 1: High-affinity 
binders (top 1%) to a single, distinct antigen, excluding those that also bind to the positive-class 
antigen; vs 9: An expansion of vs 1, comprising high-affinity binders to each of the other nine 
antigens, equally represented. 

We trained SN10 models. This architecture was chosen for its interpretability and previous 
benchmarking performance and showed comparable results to deeper models. To validate our 
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conclusions derived from synthetic datasets, we replicated the same experimental setup using 
the HER2-targeting dataset published by Porebski et al. (115). 

1.2 In-distribution (ID) Prediction Accuracy Depends on Training Dataset Composition 
To evaluate the capacity of models to learn generalizable rules, we first measured in-distribution 
(ID) accuracy—performance on test data with the same positive and negative class definitions 
used during training (Fig. 9a). Across all four task types, models achieved high ID accuracy, with 
median values exceeding 0.85. A clear ranking emerged across tasks: models performed best 
on “vs Non-binder” (range: 0.97–1.00, median: 0.99), followed by “vs 1” (range: 0.94–1.00, 
median: 0.98), “vs 9” (range: 0.91–0.98, median: 0.94), and finally “vs Weak” (range: 0.85–0.98, 
median: 0.92), which proved most challenging (Fig. 9b). Moreover, the SN10 model 
outperformed logistic regression (LR), particularly in the “vs Weak” task. This suggests that 
SN10 can leverage inter-positional dependencies in the sequences that LR cannot. 
 
1.3 Sequence Dissimilarity Explains Variability in ID Accuracy 
To understand why ID performance differed across tasks, we examined the relationship 
between model accuracy and sequence dissimilarity between positive and negative datasets. 
Using position weight matrices (PWMs), we calculated Jensen–Shannon distances (JSD) to 
quantify distributional divergence. We found that JSD increased in the order: “vs Weak” < “vs 9” 
< “vs 1” < “vs Non-binder”, reflecting greater sequence divergence between the positive and 
negative classes (Fig. 9c). This gradient closely mirrored the ID accuracy trend, and JSD was 
significantly correlated with model performance for “vs 9” (r = 0.94), “vs 1” (r = 0.73), and “vs 
Non-binder” (r = 0.77) tasks (all p < 0.05), but not for “vs Weak” (r = 0.30, p ≥ 0.05) or any of the 
shuffled controls (Supp. Table 1, Supp. Fig. 3a from Ursu, Minnegalieva et al. (121)). 
 
1.4 Out-of-distribution (OOD) Accuracy Is Also Shaped by Dataset Composition 
We assessed out-of-distribution (OOD) generalization (Fig. 9d). OOD accuracy was lower than 
in-distribution (ID) performance, as expected. 
Models trained on "vs Non-binder" showed the largest drop (median ID 0.99 to OOD 0.72-0.82) 
(Supp. Fig. 3d from Ursu, Minnegalieva et al.(121)). "Vs 9"-trained models generalized best to 
"vs 1" (0.94), while "vs 1" models performed moderately (0.78 to "vs 9," 0.72 to "vs 
Non-binder"). The "vs 1" negative antigen choice affected results (Supp. Fig. 5 from Ursu, 
Minnegalieva et al.(121)). 
"Vs Weak" was the hardest OOD test (accuracy 0.58–0.71). Surprisingly, "vs Weak"-trained 
models generalized best overall (0.90–0.96) (Fig. 9d). 
High ID accuracy does not guarantee generalization. E.g., "vs Non-binder" yielded excellent ID 
but poor OOD performance, while "vs Weak" was the hardest ID task but the most robust in 
generalization. This highlights the critical role of negative class design for antibody–antigen 
binding ML models. 
 
1.5 Experimental Data Confirm Findings from Synthetic Datasets 
To validate these findings in real-world data, we analyzed an experimental antibody–antigen 
binding dataset recently published by Porebski et al. (115), which, like the synthetic "Absolut!" 
data, includes affinity-annotated CDRH3 sequences against HER2 (see Methods). 
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Figure 9. Classification accuracy varies across antigens, binding prediction tasks, and positive-negative 
sequence similarity. Figure adapted from Figure 2 from Ursu, E. et al. (2025), used under license CC BY 4.0 
 
SN10 models were trained on each task and evaluated on both ID and OOD test sets (Fig. 9f). 
The “vs Non-binder” model struggled on the “vs Weak” task (68% OOD accuracy), while the “vs 
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Weak” model generalized well (88% OOD accuracy). Just as in the synthetic experiments, “vs 
Weak” training led to tighter, more generalizable decision boundaries that balanced 
performance across tasks. By contrast, “vs Non-binder” training led to more permissive decision 
boundaries that offered high recall within ID contexts but resulted in false positives under OOD 
scenarios. 
 
2. Training dataset composition determines the accuracy of biological rule recovery  
Having established that the composition of negative training data influences prediction accuracy 
and generalization in supervised binary sequence-based machine learning (ML) tasks, we next 
investigated whether it also affects the model's ability to learn biologically meaningful binding 
rules. 
 
2.1 Training Dataset Composition Impacts the Learning of Antibody Binding Energy 
We first asked whether trained models captured the energy landscape of antibody sequences. 
Although some studies have explored simultaneous prediction of binding status and affinity 
(122,123), binary classification (binding vs. non-binding) is often more experimentally tractable. 
To assess whether our model, SN10, implicitly learns sequence-to-binding energy relationships, 
we computed the correlation between predicted output logits (i.e., raw pre-sigmoid activations) 
and ground-truth binding energies on a per-sequence basis. These logits reflect the model's 
confidence in predicting positive class membership (Fig. 10a). A representative 2D distribution 
for antigen 3VRL in the "vs Weak" task is shown in Fig. 10b (inset). 
Overall, models trained on “vs 1” and “vs 9” datasets failed to learn per-sequence energy rules, 
with weak correlations of –0.05 and –0.19, respectively (Fig. 10b). Notable exceptions were 
antigens 3VRL and 5E94, where models learned binding energies more effectively regardless of 
negative dataset type. By contrast, models trained with “vs Weak” or “vs Non-binder” negatives 
consistently learned meaningful energy associations across all antigens, achieving median 
Pearson correlations of –0.62 (range: –0.33 to –0.90) and –0.51 (range: –0.29 to –0.85), 
respectively.  
These results indicate that the capacity to learn energy-based rules is strongly dependent on 
the type of negative training data. This is supported by significant variance in correlation values 
across tasks (one-way ANOVA, p = 8.7e–58) and across antigens (one-way ANOVA, p = 
4.6e–25). 
To evaluate whether learning of binding energy rules affects model performance, we correlated 
logit–energy associations with both ID and OOD prediction accuracy. Significant associations 
were observed in ID settings for “vs Weak” (r = –0.77) and “vs Non-binder” (r = –0.83) tasks 
(Fig. 10c). For OOD tasks, accuracy was significantly associated with logit-based rule learning 
across all cases (Supp. Fig. 4b from Ursu, Minnegalieva et al. (121)). 
 
2.2 Training Dataset Composition Impacts Learning of Position-Wise Contribution to 
Binding Energy 
Having shown that SN10 can capture per-sequence energy rules, we next investigated whether 
it could also learn position-specific contributions of amino acid residues to binding—an essential 
determinant of immune recognition. Our hypothesis was that correctly learned rules would result 
in negative correlations between attribution values (computed via DeepLIFT (114)) and 
per-residue binding energy: residues with stronger binding (lower energy) should receive higher 
attribution in positive predictions. 
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Consistent with per-sequence results, the strongest per-residue rule learning occurred in 
models trained on “vs Weak” (median r = –0.69) and “vs Non-binder” (median r = –0.71) 
datasets. In contrast, models trained on “vs 9” and “vs 1” tasks showed weaker or even 
reversed associations (–0.36 and –0.01, respectively). Notably, for antigens such as 3VRL, 
5E94, and 3RAJ, correlations remained high across all negative datasets—suggesting that in 
some cases, positive data alone may suffice to learn position-level rules. 
Task type significantly influenced rule learning (one-way ANOVA, p = 3.5e–43). No significant 
correlation was found between ID prediction accuracy and per-residue rule learning (Fig. 10e), 
underscoring the importance of evaluating explainability metrics independently. However, OOD 
accuracy did correlate with attribution-energy agreement in most “vs 1” and “vs 9” settings 
(Supp. Fig. 4b from Ursu, Minnegalieva et al. (121)). In contrast, such associations were not 
observed for models trained on “vs Weak” or “vs Non-binder” datasets. 
 
2.3 Investigating the Extent of Additivity in Learned Rules 
Although “vs Weak” and “vs Non-binder” tasks yielded highly similar attribution profiles, their 
differing out-of-distribution (OOD) performance prompted us to explore whether these models 
relied more on additive or non-additive decision rules. Specifically, we aimed to understand 
whether the differences in generalization could be explained by the extent of feature interactions 
learned during training. To assess this, we trained logistic regression models. These models 
lack the capacity for feature interaction. As such, they serve as a benchmark for purely additive 
rule learning. The findings imply that “vs Non-binder” tasks can be solved primarily using 
additive features, while “vs Weak” demands more complex, interaction-driven representations. 
This aligns with the superior performance of SN10 over logistic regression in harder tasks like 
“vs Weak” (Supp. Fig. 3c from Ursu, Minnegalieva et al. (121)), supporting the notion that SN10 
benefits from its ability to model feature interactions. 
 
Discussion 
The definition of positive and negative data fundamentally influences machine learning model 
behavior, yet remains an underexplored area in immunological ML applications. In this study, we 
demonstrated that both in-distribution (ID) and out-of-distribution (OOD) performance, as well as 
the interpretability of learned rules, are strongly dependent on the composition of the training 
dataset in the context of antibody-antigen binding prediction. 
More broadly, our results underscore that training data curation is not merely a preparatory step 
but a central design consideration in developing robust and generalizable ML models. Careful 
planning and justification of dataset composition are critical for achieving valid predictive 
outcomes and biologically meaningful rule discovery, particularly when models are applied 
beyond the immediate scope of their training data. 
Our work demonstrates that the definition of negative training data has a profound impact on ML 
model behavior, including prediction accuracy, generalization (ID vs. OOD), and the discovery of 
biologically meaningful binding rules in antibody-antigen interactions. Despite the importance of 
this topic, it remains underexplored in the antibody domain compared to its treatment in 
TCR-epitope prediction studies (107–111). 
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Figure 10. The composition of the negative dataset shapes the model’s ability to learn binding rules for 
positive sequences. 
Figure adapted from Figure 3 from Ursu, E. et al. (2025), used under license CC BY 4.0 
 
Our findings emphasize that: Careful definition of negative datasets is critical for interpretable 
and generalizable ML models in immunology; OOD performance should be an explicit metric in 
evaluating rule discovery and model interpretability and current attribution methods have 
limitations, and novel techniques are needed to capture feature interactions, such as epistasis, 
that likely underlie complex biological phenomena (124–126). 
 
In summary, our findings demonstrate that: Models trained on datasets with closely matched 
positives and negatives generalize better and learn more robust biological rules; Negative 
dataset design is not merely a technical step but a central determinant of model behavior and 
interpretability; Future work should systematically explore strategies for selecting hard negatives 
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(127), investigate near-miss sequences, and develop attribution methods that capture complex 
binding determinants. 

VI. Final remarks 
The work presented in this thesis was driven by a central question: how can we better 
understand the biological complexity of aging through the lenses of modern omics, 
computational biology, and machine learning? To address this, I integrated multi-dimensional 
datasets, developed novel computational tools, and collaborated across disciplines to explore 
key aging mechanisms from a systems-level perspective. 
 
Across five chapters, I approached aging through distinct yet interconnected angles. In Chapter 
II, I explored transcriptomic signatures across 41 mammalian species, uncovering conserved 
and organ-specific gene expression patterns associated with lifespan. Chapter III expanded on 
the intersection between aging and fibrotic remodeling in the lungs, highlighting both conserved 
molecular patterns and unique aging signatures in a well-characterized fibrosis model. In 
Chapter IV, I focused on intercellular communication—a hallmark of aging that remains 
understudied—and co-developed scDiffCom and scAgeCom, providing a scalable generalizable 
framework to map and quantify age-associated signaling disruptions. Finally, in Chapter V, I 
turned to the adaptive immune system, combining machine learning with AIRR-Seq data to 
examine how model performance and biological insight are shaped by the composition of 
training datasets—a foundational contribution for future studies of immune repertoire aging. 
 
Throughout this thesis, I have sought not only to generate results, but to contribute tools, 
frameworks, and methodologies that will empower others in the aging research community and 
in the life sciences. This includes interpretable machine learning strategies, cross-species 
analytical pipelines, and robust datasets made publicly available for broader reuse. My research 
reflects the belief that deep biological insight often emerges at the intersection of data richness, 
methodological rigor, and cross-disciplinary collaboration, but also fundamental biological 
understanding. 
 
While many questions remain, I hope this thesis provides a meaningful step toward 
understanding the molecular determinants of aging. Future work may expand on the tools 
developed here, applying them to longitudinal human datasets, interventional studies, or 
therapeutic screens. The ultimate goal remains the same: to untangle the complexity of aging in 
ways that can inform strategies for healthier and longer lives. 
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